A multimodal test function with three global minima, commonly used for testing optimization algorithms. Fixed dimension of 2.
F17(x)Numeric scalar representing the function value.
Formula: $$f(x) = \left(x_2 - \frac{5.1}{4\pi^2}x_1^2 + \frac{5}{\pi}x_1 - 6\right)^2 + 10\left(1 - \frac{1}{8\pi}\right)\cos(x_1) + 10$$
Global minimum: \(f^* \approx 0.397887\) at three locations:
\((-\pi, 12.275)\)
\((\pi, 2.275)\)
\((9.42478, 2.475)\)
Characteristics:
Type: Multimodal
Separable: No
Differentiable: Yes
Fixed dimension: 2
Number of global minima: 3
Default bounds: \(x_1 \in [-5, 10]\), \(x_2 \in [0, 15]\)
The Branin function is often used as a benchmark because it has three global minima that are well-separated.
test-functions for an overview of all test functions,
get_function_details to retrieve function parameters.